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ABSTRACT 

For any uniform algebra A and any point q of the maximal ideal space of A 
there exists a Jensen measure 2 for q carried on the Shilov boundary for A such 
that 2 admits the generalized Brownian maximal function to each nonnega- 
rive A-subharmonic function in CR(X). The maximal function and its original 
function satisfy Doob's inequality, Burkholder-Gundy-Silverstein inequali- 
ties and Fefferman-Stein inequality. 

1. Introduction 

Let Xbe the maximal ideal space of an arbitrary uniform algebra A and let q 

be any point of X. The letter J denotes the totality of continuous A- 

subharmonic funtion on X(cf. [6]). The convex cone Jdefines the partial order 

on the totality M+(X) of finite positive regular Borel measures on X. This 
order relation is denoted by the symbol < ,  i.e. the relation r < v holds for any 

pair z, v in M+(X) if and only if they satisfy f kdT < f kdv for each k of J. Also 

we note that a positive measure z supported on X is a Jensen measure for q ~ X 

if and only if it satisfies the relation t~q < r, where c~q is the Dirac measure at q. 

In [8], we studied fundamental inequalities among p-th means of  functions 

in J with respect to a certain type of Jensen measure 2x for q. The measure 2x 

was assumed to be the distinguished member in the following subclass of 

M+(X). Let ~ be the totality of the compact subsets of X that contain q. We 

use the letter ~ to denote a subset of  ~'q which includes X. 

DEFINITION 1.1 (cf. [8]). A subfamily {2~ : G E ~} of M +(X) indexed by 

is called a consistent family with base point q, if it satisfies 
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(1) each 2o is carried on G and satisfies ~q < :to; 

(2) i f F  c G, F, G ~ ~), then 2e < ;to; 

(3) if F c G and if U is the relative interior of F with respect to G, then the 

restriction ;t~- ] U of;tr onto U is absolutely continuous with respect to ;to 
and its density satisfies 

0 < d(2r [ U)/d2o ___< 1 a.e. 2o; 

(.) the maximum measure 2x in the family with respect to the order < is 

called the terminal measure of the family. 

Throughout this paper we are mainly interested in consistent families which 

are indexed by ,~. The notion of consistent family was required to generalize 
the probabilistic theory of Hardy spaces in the context of a uniform algebra. 

We used such a family as a substitute for Brownian motion, which has been 

one of the powerful devices in the analysis of classical Hardy spaces. In 

concrete algebras such as the disk algebra A(D), two dimensional Brownian 

motion starting at 0 combines with the consistent family via the stopping time 

argument: A. Debiard and B. Gaveau [3] established that the first exit time of 

the Brownian paths with respect to a compact subset G 3 0 o f / )  yields the 

Keldysh measure for 0 supported on the boundary of G. The totality of these 

Keldysh measures was the original model of  consistent families, and in this 
case the terminal measure is identical with the normalized Lebesgue measure 
on the circle. The most interesting observation in this line is that the Brownian 
maximal function of nonnegative function o n / )  can be obtained directly from 
Keldysh measures, as long as we are interested in its conditional expectation 
relative to Baire a-algebra on the circle. We can complete the above translation 
without applying probabilistic argument. Furthermore, in that procedure, only 

three properties of Keldysh measures are needed, that is, the conditions in 

Definition 1.1. Thus we reached the notion of consistent family in the context 

of  a uniform algebra. It was proven in [8] that the terminal measure of any 

consistent family indexed by ~q admits the maximal function, just like the 

conditional expectation of Brownian maximal function, to each nonnegative 

function in J. The maximal function and its original function satisfy Doob's 

maximal inequality [4], Burkholder-Gundy-Silverstein inequalities [2], Fef- 
ferman-Stein inequality [5]. Also it is not so hard to prove Zygmund's L log L 
estimate (cf. [10]) etc., though we did not discuss them in [8]. Hence so far as 

basic results on Hardy spaces are concerned, the notion of consistent family 

may be regarded as a useful substitute for Brownian motion. But, if we want to 
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justify this viewpoint more explicity, we must answer the important question: 

to what extent do consistent families exist? The purpose here is to present 

some information about this problem. Our main result is as follows. For an 

arbitrary uniform algebra A and any point q of the maximal ideal space X of A 
there exists a consistent family of Jensen measures, indexed by ~q, whose 

terminal measure is carried on the Shilov boundary for A (Theorem 3.1). The 

key to our study is the localization principle due to T. W. Gamelin and 

N. Sibony [7], which guarantees the sheaf structure of the cone of A-subharmo- 

nic functions on X. 
Here some comment should be made about the style of this article. Although 

our concern is focussed on uniform algebras, the principal results in this paper 

will be described in a more general situation. It is mainly because we want to 

treat Haar measures on tori in connection with the cone of Rudin's n- 
subharmonic functions on a polydisk. Furthermore, to present various exam- 

ples of general consistent families, we shall investigate the probability mea- 

sures on compact convex sets (Section 4). It will be proven that such a measure 

is always the terminal measure of a general consistent family. 

Finally the author should like to express his deep gratitude to Professor 

T. W. Gamelin for his encouragement during this study. 

2. Existence theorem for consistent families 

Throughout this section we shall assume that X is an arbitrary, but fixed, 

compact Hausdorff space. The letter J denotes the convex subcone of CR(X) 
such that 

(a) J contains the constants R and separates the points on X; 
(b) J is stable in the max-operation, i.e. the function ( fvg)(x)= 

max{ fix), g(x)} is contained in J provided f ,  g are in J; 

(c) Jhas  the sheaf structure. In other words, for any open cover { Ui}iEt of X 

and any set { f},~z of functions in J, if a function g~-CR(X) satisfies 

g = f on each Ui, then g belongs to J. 
We first clarify the notations and mention the fundamental results about J,  

most of  which can be found in A. M. Alfsen [1] and T. W. Gamelin [6]. L e t f  

be an extended real-valued function defined on a subset E of X. The lower J- 

enve lopefof  f i s  the function on X defined as 

f (x)=sup(g(x):g~J,g [E <=f}, VxEX.  

The partial order on M+(X) induced by J is denoted by the symbol < .  A 
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positive measure is said to be maximal on a compact subset G of X, if it is 
maximal in M+(G) with respect to the order < .  It is know that any positive 

measure on G is dominated, with respect to the order < ,  by a measure 

maximal on G. Furthermore a positive measure/t carried on G is maximal on 

G, if and only if it satisfies f = f a.e. g, V f E  CR (G). Let p be any point of  X for 
which the Dirac measure t~p is maximal on X. The totality of such points forms 

the Choquet boundary for J, whose closure is known as the J- Shilov boundary. 

The J-Shilov boundary is the minimum closed subset of  X on which every 

function in J attains its maximum value on X. Applying the Bishop-de Leeuw 

theorem, we find that any positive measure maximal on X is carried on the J- 
Shilov boundary. Since J is assumed to have the sheaf structure, the positive 

measures maximal on X have the following localization property. 

THEOREM 2.1. Suppose a positive measure lt is carried on the interior Int G 

of  a compact set G in X. I f  It is maximal  on G, then I~ is maximal  on X.  

PROOF. It suffices to show that f f d g  = ffd# for every f~CR(X) .  We may 

suppose f is nonnegative, because J contains the constants R. Then for any 

strictly positive number e, there exists a nonnegative function g of CR(X), 

compactly supported on Int G, such that g _-< f a n d  f gdlt > f fd# - e. This is 
due to the fact that # is carried on Int G. On the other hand, if h ~ J  is 
dominated by g on G, so is the function h* which is equal to h v 0 on G and 
equal to 0 outside G. By the sheaf structure of J,  h* belongs to J. This implies 
that ~ = g i G on G. Since # is maximal on G, we have 

Letting e go to 0, we conclude that f fdg = f f dg .  

Let q be an arbitrary point of  X and let ~ be the totality of compact subsets 

of  X, each of which contains q. The letter ~ denotes a subset of ~ .  Let 

{2~ : G E 9}  be a collection of positive measures supported on X. This family 

in M+(X) is called a consistent family with base point q, if it satisfies three 

conditions in Definition 1.1. If further ~ contains X, the element ~.x of  the 

family will be refered to as the terminal measure. The following stability 

properties of consistent families are easy to check (cf. Theorem 4.8, 4.9 in [8]). 

THEOREM 2.2. For two consistent families ( ( 2b }~eu),-- 1.2 with base point q, 
their convex combination (s,~b + (1 - s)2 2" G E ~},  0 < s < 1, is a consistent 

family  with base point q. 
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Let ((2b }~u)~e~ be a set of consistent families, indexed by a directed set I, 
whose base points are identical. Suppose, for each G ~ 9 ,  i (2c)ie~ converges 
vaguely to 2~ along I. Then {2~: G ~ 9}  is a consistent family with common 
base point. 

From now on we set about to construct a consistent family, indexed by ~ ,  
whose terminal measure is carried on the J-Shilov boundary. We first manu- 
facture a finite model of diffusion processes such as the Brownian motion on 
the plane. For this aim we must define the channels along which our finite 

model flows. 

DEFINITION 2.3. Let ~ be any finite subset Of~q. A path bundle Q o n  ~ is 
a finite sequence Q = {(~j, %)}7=t of the pairs (~i ,  %), 1 < j  _-< n such that 

(1) ~ = 9 ;  

(2) ~j  C ~ j  c 9 ,  1 < j  < n (possibly cgj = ~ j  or ~ j  = 9) ;  

(3) ~ k  + t = ~ k  \ (~k and ~ 4: ~ if  k < n. 

The totality of the path bundles on ~ is denoted by f~(~). We list the notations 
needed in the subsequent argument. 

(4) card(Q) = the cardinal number  of  a set Q; 

(5) Q I k = ( (~j ,  %)}j_-__k, where Q = {(~j, %)}~_~ and k > 1; 
(6) (~(Q),  ~(Q)) = the final term of Q; 
(7) E(Q) = [ n ( I n t  V: v ~ ( Q ) \  cg(a)}] n [ (]{01/: V ~  cg(a)}] (we put, 

for convenience x =  n { I n t  I/: I / ' ~O}  = n{cgV: v ~ z } ) .  
(8) a + 1 = {Q*Ef~(~)  : Q c Q*, ~(Q*)  = ~ ( Q ) \  qg(a)}. 

The following properties of f~(~) are easy to check. 

PROPOSITION 2.4. For any finite subset ~ Of ~q, the path bundles Q, Q* on 
satisfy 

(1) the inclusion Q c Q* implies Q = Q* I card(Q); 
(2) Q I whenever QEf~(~)  andk  > 1; 
(3) in the case Q* ~ Q + 1, card(Q*) = 1 + card(Q) i f  Cg(Q) is nonempty, 

and otherwise Q + 1 is a singleton {Q}; 
(4) i f  ~(Q) ~ ~ ,  then {E(Q*) : Q* ~ Q + 1 } gives a partition of the set 

f ]  { I / :  V u ~ ( Q )  \ ~¢(Q)} into pairwise disjoint Borel sets in X (note that 
~(Q*) = ~ ( a )  \ ~(Q)). 

Our finite model of diffusion processes is defined as a certain type of map 
from f~(~) into M+(X), which will be called a tree along ~ ( ~ ) .  

DEFINITION 2.5. Let ~ be a finite subset of~q.  A map ;t : f ~ ( ~ ) ~ M + ( X )  
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from I'~(~) into M+(X) is called a tree along f~(~) with base point q EX if it 
satisfies 

(1) each 2(Q) is carried on the closure E(Q) in X of E(Q), especially 
2(Q)= 0 i f g ( Q ) =  ~ ;  

(2) ~q < Y~ 2(Q); 
QED.(~) 

ca rd (Q)  = I 

(3) for any Q ~f~(~), 2(Q) < ZQ.eQ+t 2(Q*). 

PROPOSITION 2.6. For each finite subset ~ c ~ there exists a tree 2 along 
f~(~), with base point q, which satisfies the stronger version (1.) of (1) in 

Definition 2.5: 
(1.) each 2(Q) is carried on E(Q) and is maximal on the closed set 

n {v: vEto(Q)} in the order < (here weput X = n{  v:  v ~  }). 

PROOP. Call f~[ n = {QEf~(~) : card(Q) ___< n} and by induction we con- 
struct a map 2. : f~ I n --'M+(X) which has the properties (1,), (2) of Defini- 
tion 2.5 and 

(3*) if Q of f~ [ n admits the inclusion Q + 1 c ~ [ n, then 

2.(Q) < 2 2,(Q*). 
Q * e Q  + 1 

Since the length of the path bundles in f~(~) is uniformly bounded, any 2. with 
n large enough will work as the desired map 2. 

We first take a measure/~ from M+(X) which is maximal on the closed set 
n { v:  v ~  ~} and satisfies Jq </t. Let 2~ : f~ [ 1 --,.M+(X) be the map defined 
by 2~(a)=/t  IE(O), VQ~I 1. Since the collection {E(Q); QEf~(~), 
card(Q) = 1 } gives a partition of the set O{ V: VE ~} into pairwise disjoint 
Borel sets, 2t is surely one of the desired maps. 

Next suppose that a map2. :rain--.M+(X) has (1.) (2), (3*). For each 
Q E(t  I I n - 1) there exists/z e ~M+(X) which is maximal on the set 
n { v: v ~  ~ ( Q ) \  ~. (Q)} and such that 2.(Q) < pQ. Note that if ~g(Q) = ~ or 
equivalently ifQ + 1 = {Q} ( c fl I n), we have 2,(Q) =/zQ; it is because 2.(Q) 
is maximal on n{  v:  v E  ~(Q)} by the induction hypothesis. Here we require 
that the collection {Q + 1 : Q ~(D I n)k(f2 [ n - 1), ~g(Q) ÷ ~ } gives a parti- 
tion of ( ~ ] n  + l)\(f~] n) into pairwise disjoint subsets. Indeed, for any 
Q ~(f~ I n + l)\(f~ I n), relations Q [ n Ef~[ n and ~(Q [ n) 4: ~ hold by the 
very definition of the path bundles. In particular, Q E (Q [ n) + 1. On the other 
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hand if(Ql + 1) ~ (Q2 + 1)~Q for some Ql, Qz of(f~ I n ) \  i f ] I n  - 1), then the 
equality Ql = Q In = Q2 must be valid. These yield the above fact. Further- 
more, we get 

U~= Y, / rolE(Q*) V Q ~ ( f ~ l n ) \ ( ~ l n - l ) .  
Q*~ Q + l 

This is due to the fact that {E(Q*) : Q * ~  Q + 1} gives a decomposition of the 
set N{ V: V ~  ~ ( Q ) \  ~(Q)} into pairwise disjoint Borel sets whenever Cg(Q) 
is nonempty. Put for each Q* ~ f~ [ n + 1 

_ / 2"(Q*) i f Q * E ~  I n, 

2. + ,(Q*) - [.uo. [ E(Q*) if Q* E Q + I for some Q E (f~ [ n) \ (f~ [ n - 1). 

It is now clear that 2,+1 : ~ [ n + 1 ~M+(X)  is well-defined and has (1,), (2), 
(3*). Thus by induction we have established the assertion. 

Let ~ be the property of the path bundles ~ (~) .  We denote by YI(~) [ ~ the 
totality of path bundles with ~ .  That is, 

a( )l = ( Q ~ f l ( ~ ) :  Q has the property ~}.  

The typical properties are the following: with of  contained in ~ .  

card(Q) _-< n; 

(2.1)ll~)) QDQ*(theprolongationsofQ*); 
(3) [~(Q) 3 of] ^ [(~(Q) = Z~) v (Cg(Q) fq of  4= ~ ) ]  (path bundles 

checked by the "boundary" of the compact set A{ V: V~of}) ,  

where v (resp. ^ ) implies "or" (resp. "and"). These three properties will be 
denoted by the letters n, Q* and of  respectively. Let us note the identity 
f~ [(of ^ O*) = (f~ l of) t3 (f~ I a*), where ~ = f~(~). 

LEMMA 2.7. Let ~ be a finite subset of  ~ and let ~ = f~(~) be the path 
bundles on ~.  For any QEf~, i f  o f  is a subset of  ~(Q) satisfying 
a ~ f~ I (a A of), then the collection {f~ ] (O* A of) : Q* ~ Q + 1 } given a parti- 
tion off] ] (Q A of) into pairwise disjoint subsets. 

I f  of, ~ are subsets of ~ such that o f  D ~ ,  then the collection 
{~ [ (-~ ^ Q) : a E ~ I of} gives a decomposition off~ I -~' into pairwise disjoint 
subsets. 

PROOF. For the first assertion we note that every Q* of Q + 1 admits 
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f~ I ( f i  ^ Q*) = fl I Q* n n l f i  c n n [ f i =  n I(Q ^fi), 

because ~ I Q* c f~ I Q. Now, assume that fl  I(Q, ̂  fi) n n I(Q2 ̂  f i )BQ0 for 
some Q~, Q2 of Q + 1. Then it follows from the definition of path bundles that 
Q0l card(Qj) = Qj(j = 1, 2). So we get Qt = Q2, since card(Qj) are identical. On 
the other hand, for any Q, Ef~I(Q,,Jr), the set Q + 1 contains Q * =  
QI [ (card(Q) + 1), because ~(Q)  :~ ~ and ~(Q) n o f  = ~ in this case. From 
the fact Q, Ef~ [ a*, we have al~f~ [ (a* ^ fi),  Q*EQ + 1. 

For the second assertion assume that f~[(Q~ ^ ~ ) n  n l(O~^~)~O for 
some a~, 02 of f~ [ f i .  Since Qj = a [ card(Qj) (j = 1, 2), either of the inclu- 
sions Q~ c Q2 or Q2 c Q~ must hold. We may assume that Q~ c Q2. If Q~ 4~ Q2, 
then between final terms (~(Qj), Cg(Qj)) ofQj (j = 1, 2), the relations ~(Q2) c 
~ ( Q I ) \  ~(Qt), ~(Q~) ~ ~ hold by (3) in Definition 2.3. On the other hand, f i  
is contained in ~(Qj) (j = 1, 2) by the definition of the property fig. But this is 
impossible, because ~q(Q~) N f i  ~ ~ in the present situation. Hence we get 
Qt = Qv 

Conversely if Q* belongs to f~ [ ~ ,  ~q(Q*) satisfies either of the relations 
~ ( a * )  = ~ or ~ ( a * )  A ~ ~ ~ by (3) in (2.1). Call Q* = {(~j, %)}j"=l and 
let k be the greatest number  amongj  that satisfy f i  c ~ j .  Since ~0~ = @( D f i )  
by (1) in Definition 2.3, such k exists. In the case k < n, we have Ck N of( ~: ~ ,  
because f i ¢  ~k +~ = ~ \ cg~ by (3) in Definition 2.3. Moreover if k --- n, we 
get ~g~ = ~g(Q*) = ~ or ( ~  ~ f i )  D (~g~ ~ La) ~ ~ .  Accordingly it turns out 
that the path bundle Q = Q*lk belongs to i l l  f t ,  and so we find that 

L~MMA 2.8. Let ~ be a finite subset Of ~q.  Every tree 2 along f~ = ~( ~)  
with base point q has the following properties: 

(1) for each subset f i  of  ~ ,  if  Q off~ satisfies f i  c ~(Q), then 

2(Q) < Y~ 2(Q*); 
Q*~[~ I (,Y/" ̂  Q) 

(2) for any two subsets f i ,  ~ of ~ satisfying ~ c f i ,  we have 

g~,~< Y~ 2 (0 )  < Z 2(Q); 

(3) for any f i ,  ~' c ~ ,  if  O{V:  V ~ f i }  = (']{ V" V ~ e } ,  then we get 

Y~ 2 ( Q ) =  ~] 2 ( Q ) =  Y~ 2(Q). 
QefllJ¢-  Q~t'21..o' Qe(~ lS t ' )  ~ ( f l l ~ )  

PROOF. The proof of (1) is by induction on card(~(Q)).  We first consider 
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the case card(~(Q)) --- card6,'g'), i.e. ~ (Q)  = ~Y'. Since ~ ( Q )  contains ~(Q), Q 
must belong to I) l Jg  by (3) in (2.1). We require that f ~ l ( ~ ^  Q ) =  {Q). 
Indeed, if there exists a path bundle Q* such that Q g Q* (or equivalently if 
qq(Q) 4: ~ ), the subset ~(Q*)  of ~ (Q)  \ ~(Q)  does not contain ~ff, because 
3¢g fq ~(Q)  4 ~ in this case. Hence ~ [ ( Q  M o~ff)~bQ*, i.e. f~l(Q A ~,~() = (Q}. 
In the case ~,(Q) = ~ ,  it is easy to check that Q E ~ ] (Q ^ ~ )  c f~l Q = {Q). 
So in both cases, we have (1). 

Next, assume that (1) is true for all Q with properties ~ c ~ ( Q )  and 
card(~(Q)) < k + card(J{') (k > 1). Take any Q that satisfies Jg  c ~ ( Q )  and 
card(~(Q)) = k + card(Jg). In the case Q c f~ l J c g, i.e. ~(Q)  = ~ or 
Cg(Q) ~ ~ 4: ~ ,  we now obtain easily that tal(a = {Q). Hence (1) is 
valid for such Q. Suppose Q is not in ~q I o'f'. From (8) in Definition 2.3 and by 
the fact Cg(Q) 4: ~ ,  ~(Q)  ¢q o'¢{" = Z~, any Q*EQ + 1 admits the relation 

o~¢g C ~(Q*)  = ~ (Q)  \ ~(Q), card(~(Q*)) < k + card(JOg). 

Therefore we get by induction hypothesis and from Lemma 2.7 that 

it(Q) < ~] it(Q*) 
Q*E Q + 1 

Q*~.Q+ 1 Q°EflI(Q* ^ at() 

= y, it(Q*). 
Q*~t'll( Q A,~) 

Accordingly we conclude (1) by induction. 
Property (2) is immediate from (1) and Lemma 2.7. Indeed, for two subsets 

~ff, ~ of @ such that £e C ocg, we have 

Q~fllag" Q ~ I.,~g Q*EO[(.~'^ Q) 

= Y~ 2 ( Q ) .  

In particular, by (2) in Definition 2.5, 

~q ~ Y~ i t (Q)=  Y, it(Q) < Y, it(Q). 
card(Q) = 1 QE~I ~ QEI'I[.~ 

For (3) we first treat the case ~ C o~I{'. Let Q be any path bundle off~ [ 3F that 
satisfies f~ [(O ^ze)4: (Q). We show that 2 ( Q ) = 0  for such Q. In other 
words, we require that 2(Q) vanishes at Q E f t  ] ,~g whenever ~(Q)  4: ~ and 
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~(Q) n £g = Z~. This will be done if we can show that E(Q) is empty for this 
Q. Recall that ~(Q) contains .,u:. In particular, ~ is included in ~(Q) \ ~(Q). 
This in turn yields 

E(Q) C [n{ In t  V: V ~ ( Q ) \ ~ ( Q ) } ] c  I n t [ n { v :  v ~ } ]  

and 

E(Q) = [n{In t  V: V E ~ ( Q ) \  ~(Q)}] n [ n { 0 v :  v ~  ~(Q)}] 

caiN(v: 
The last inclusion is due to the fact Jt ~ n ~(Q)4: ~ .  These imply that 
E ( Q ) = ~ ,  because n { v :  v ~ } =  n { v :  v ~ } .  Hence we obtain 
2(Q) = 0 whenever fl] (~q~ ̂  Q) 4: {Q} and Q Ef t  ] ~ .  This is nothing but (3) 
in the present situation. For general ~t '~, ~ c 9 ,  put J t  -- ~ U ~q~. Then from 
the result just proven, it follows that 2(Q) -- 0 if Q ~  ]~¢t \~ ]:/: or Q ~  

] ~ \ ~ I .#/, etc. Accordingly we conclude that 

2(Q)= Y~ 2(Q)= Y. 2(Q)= ~ 2(Q). 
OEl) l,ll Q E(D I ,/t) n ([2 I,,~) n (~ I ~") QE~I-~ OE~l.X: 

PROPOSITION 2.9. Let 9 be any finite subset of  ~q and let 2 be any tree 
along D(9)  with base point q. For any subset ~ of 9 and the compact set 
G C Xsatisfying G = n {  v: vEgt(}, i f  we callAG = ZQe~)lac 2(Q), then AG is 
well-defined. The totality of  such 2aforms a consistent family with base point q, 
which is indexed by the finite set { n { v :  V E ~ }  :,'¢" c 9}. Furthermore, if  
the tree 2 satisfies (1 ,) in Proposition 2.6, the terminal measure of the above 
consistent family is maximal on X in the order <. 

PROOF. With the aid of (3) in Lemma 2.8, the measure 2G in question is 
determined only by G: it is independent of the choice of ~ c 9 Hence 2G is 
well-defined. Moreover, for each Q of ~ [ ,~(', E(Q) is contained in the closed 
set n { v :  v ~ ( Q ) } ,  hence in G, because ~ c ~(Q) by (3) in (2.1). Since 
2(Q) is carried on E(Q), we find that 2~ is supported on G. Call 9 0 =  
{ n { v :  v G ~ } : , ~ t r c ~ }  and we prove that the subset ( 2 ~ : G ~ 9  °} of 
M+(X) is a consistent family with base point q. As shown above, each 2a is 
carried on G. Next let F, G be any two elements of ~0 satisfying F C G. Then 
there exist two subsets ~ ,  ~ of 9 such that ~ c ~g, F -- N{ V: V ~ }  and 
G = n { v :  l/~zt,}. By (2) in Lemma 2.8 it turns out that &q < 2F < 2a. Let us 
verify the inequality 2F I U _-< 2a for the relative interior U of Fwith respect to 
G. Suppose a path bundle Q ~ fl I ~ satisfies ~(Q) 4: ~ and ~(Q) n ~ = ~ .  
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We require that E(Q) is included in F \ U. This is immediate from the relation 
La C ~ ( Q ) \  ~(Q) and ~(Q) N 3f 4: ~ ,  because they imply the following 

inclusion: 

E(Q) c [n{ In t  V: V E ~ ( Q ) \  ~(a)}] n [ n { 0 v :  v ~ ( a ) } ]  

c (Int G) n OF. 

In particular E ( Q ) c F \ U, and so E ( Q ) c F \ U. Accordingly it turns out that 

2F I U < Y~ 2(Q) = Y~ 2(Q) 
OEfll.~ Q6(fl I.XC) N (Q I..q') 

___< Y, 
QEt'll~e 

Therefore we conclude that {2a'G E ~0} is a consistent family with base 

point q. 
Finally suppose 2 has property (1,) in Proposition 2.6. Then for each Q of 

O l Z~ the set E(Q) is identical with the open set N{Int V: V ~ ( Q ) } ,  
because C~(Q) is empty in this case. On the other hand, 2(Q) is maximal on the 
compact set N{ v: VE~(Q)} and carried on its interior. Hence we get, by 
Theorem 2.1, that 2(Q) is maximal on X. In particular, the measure 
ZQ~aI~ 2(Q) is maximal on X in the order < ,  which is identical with the 
terminal measure 2x of the consistent family. Indeed, X = n { v: v E ~ }. 

THEOREM 2.10. Let X be a compact Hasudorff space and let J be a convex 
subcone of CR(X) with the three properties (a), (b), (c) mentioned earlier. Then 
for any point q of X there exists a consistent family, indexed by ~ ,  whose 
terminal measure is carried on the J-Shilov boundary. In the case that the 
measures maximal on X and dominating Oq in the order < form a compact 

convex set in the dual of CR(X), we can take a consistent family, indexed by ;~, 

whose terminal measure is maximal on X. 

PROOF. Let @ be any finite subset of ~q satisfying X E ~.  By the preceding 
proposition, we find that there exists a consistent family {2~" GE cj} with 
base point q whose terminal measure 2~' is maximal on X. Since the totality of 

has the natural order of set theoretic inclusion, there exists an ultra filter I, 
defined on the set of all ~ ,  which is finer than the natural order. For each 
G E~q we denote by 2~ the vague limit of 2~ along I. Note that 2~ is 
well-defined, because G is contained in any ~ large enough. Here we require 
that {26" G ~ :~} is the desired consistent family. Indeed, for any nonempty 
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finite set ~¢" a ~ ,  {2~" G~oYg) is consistent, whenever ~ D o~c. Applying 
Theorem 2.2, we see that (2~ : G ~ ou{" } is a consistent family with base point q. 
Since of" is arbitrary, we conclude that (2~ : G E ~ } is consistent. Moreover 
any 2x ~ is maximal on X, and so supported on the J-Shilov boundary. Hence 2x 
is carried on the J-Shilov boundary. The final assertion is now obvious. 

3. Uniform algebras 

Let X be the maximal ideal space of an arbitrary uniform algebra A, and let 
J~ denote the totality of  continuous A-subharmonic functions on X. J~ consists 
of functions in CR(X) which are uniformly approximated by functions; 

~/ cjloglfjI,  R~cj>O,  A~f j  (l_-<j_-<n<oo).  
j = l  

The convex cone JA satisfies three conditions (a), (b), (c) required of J in the 
preceding section: about (a), (b), everything is trivial. The sheaf structure of JA 
is due to the localization principle established by T. W. Gamelin and N. 
Sibony [7] (cf. [6]). Concerning the JA-Shilov boundary, it is known, and easy 
to check, that the Shilov boundary for A coincides with the JA-Shilov bound- 
ary. Also we note that any/1 ~ M ÷ (X) is a Jensen measure for q E X if and only 
if it satisfies 6~ </~. Hence we get the following. 

THEOREM 3.1. Let X be the maximal ideal space of  any uniform algebra A. 
Then for any point q of  X there exists a consistent family {2a : G E ~0 ) of  densen 
measures for q whose terminal measure 2x is carried on the Shilov boundary for 
A. In this case, we use the cone J~ to define the partial order < over M+(X). 

Let D" be the unit  polydisc in n-dimensional complex Euclidean space and 
let J .  be the set of functions f o r  cR (D"), each of which is n- subharmonic in D", 
that is, the restriction f [  D" o f f  onto D" is subharmonic in each variable 
separately (cf. W. Rudin [9]). It is easy to verify that J .  has (a), (b), (c) required 
of  J as a convex cone on the compact Hausdorff space D ". The J.-Shilov 
boundary is identical with the torus T ", or in other words the distinguished 
boundary of D", which in turn coincides with the Shilov boundary for the 
polydisc algebra A (D "). Also, for a real-valued continuous funtion g on T" 
there exists a unique function in J.  n ( -- J . )  which is equal to g on T" . In other 
words, the Banach space J.  N ( -- J .)  with sup norm is a Banach lattice. Hence 
for each point q of D" the Dirac measure 6q is dominated by a unique positive 
measure on the torus T" with respect to the order < induced by J~. In 
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particular ~0, 0 ~Dn,  is dominated by the Haar measure (dO/2n) n on T n in the 

order < .  Moreover, any consistent family with respect to Jn is also a 

consistent family of Jensen measures associated with A (D~), since JA(on) C J~. 

THEOREM 3.2. The Haar measure (dO/2rt) n on the torus T ~ is the terminal 
measure o f  some consistent family {;to: G ~ro} ,  OED ~, which is associated 
with the cone .In. Furthermore this family is also a consistent family o f  Jensen 

measures for 0 with respect to the cone o f  A (D ~)-subharmonic functions. 

4. Compact convex sets 

Let X be any compact convex set in some locally convex topological vector 

space, and let the letter J denote the totality of  continuous convex functions on 

X. It is known that the convex cone Jhas  (a), (b), (c) mentioned in Section 2 (cf. 
A. Zygmund [ 10]). The partial order on M ÷ (X) induced by J is denoted by the 

symbol < .  If probability measures It, v in M+(X) satisfy # < v, then It, v have 
a common barycenter in X. Also, a point q of X is the barycenter of  It if and 

only if it satisfies ~q < It (cf. [1]). 
The purpose in this section is to prove that every probability measure It in 

M+(X) is the terminal measure of some consistent family {;ta: G ~ } ,  

associated with the order < ,  whose base point q is the barycenter of  It. For a 

nonempty finite set D of points on X, the following measures: 

Ec,=l, 
y~D yED 

will be called probability simple measures. It is known that any probability 

measure It EM+(X) with barycenter q is included in the vague closure in 
M+(X) of probability simple meaures with common barycenter q. Therefore 
with the aid of theorem 2.2, we have only to treat probability simple measures. 

Here let us agree to use the symbol [w, z] (resp. (w, z)) for the segment (resp. 

free segment) on X connecting w, z in X. 

LEMMA 4.1. Every probability simple measure It = ~y~O Cy(~y, on X is the 

terminal measure o f  some consistent family {;to : G E ~ }, associated with the 
order <, whose base point q is equal to the barycenter o f  It. 

PROOF. The proof is by induction on card(D). I fD  is a singleton {q}, then 
the set of  measures ;tG = ~q, G E ~rq, is clearly the desired family. 

Next, assume that the assertion is true for any probability simple measures It 

as above with card(D) less than n (1 < n < oo). Let D be a subset of  Xwhich 
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consists of  n distinct points, and let # = Eyeo c~Ay be a probabil i ty simple 

measure such that 0 < cy < 1 for each y ~ D. We first take a point  p f rom D and 

call v = Zyeo\cp~ c~Ay/(1 - cp). By the induction hypothesis, v is the terminal 

measure of  a consistent family {2 ° • G ~ ~ }, where r denotes the barycenter  o f  

v. Applying this family, we manufacture the consistent family (2o: G ~ ~ } 

such that 2x = #. In the case p = q, or equivalently i fp  = r, the set o f  measures 

2o = cpOp + (l - cp)2 ° gives the desired family by Theorem 2.2. So, in the 

sequel, we suppose p v~ q and r :~ q. 

When G ~ ~ does not contain q in its interior, we put  :to = 0q. If  G satisfies 

Int G g q ,  we first take the connected component  (w, z) o f  (Int G ) N  (p,  r) 

which contains q. Note  that this is possible, since q belongs to (p,  r) by the fact 

Oq < C~p + (1 - cp)0,. We may suppose that p,  w, z, r a re  placed in this order. 

Call lo = [w, z]. Since Io contains q, there exists a unique convex combinat ion 

mO,,, + ( 1 -  m) 6~ whose barycenter  is equal to q. We put  2o = m0,: + 

(1 - m)O~ if z v~ r and 2o = mSw + (1 - m)2 ° otherwise. Here let us note that if 

z = r, the set G belongs to : , ,  and also, that ,~x = CpOp + (1 - Cp)2 ° =to. 
The family (:to: G E ~ } thus defined gives the desired consistent family. 

Clearly each 2o is carried on G. Also, by the very definition of  2o it follows 

easily that 0q < 2o and 2x =/~. Therefore we have only to prove that 2v < 2o 

and '~v ] U ~ '~a for F ,  G ~ ~ such that F c G, where U is the relative interior 

o f  F with respect to G. I f  q is not in Int F then 2 r ---- 0q, and either o f  the 
following relations must be valid: AG = 0q or U~q.  Hence we get that 2F < 2q 

and 2F [ U =< :lc in this case. 

Assume that q ~ I n t  F.  Fur thermore we call IF = [b, e] and Io = [w, z]. I f  

z :~ r, then 2r and ;to can be written as At, = kOb + ( 1 -- k)Oe and :t o = mow + 
(1 - m ) 0 ~  with k, m in (0, 1). Since each f ~ J  is convex on [w, z], we have 

kf(b) + (1 - k ) f ( e )  < mf(w)  + (1 - m) f ( z ) ,  i.e. 2F < 20. This is due to the 
fact that two measures have the same barycenter  and IF C IO. In the case e ~ z, 

U cannot  include e. The same is true for b and w. On the other hand, if e :/: z 

and b = w, then we have k -<_ m,  and so :tF [ U < :to. In the similar way, we can 

check the inequality :tF I U _-< ;to in each case. 

When z is equal to r, it is easy to verify that mow + (1 - m)Or < 2o. If  further 

e is different from r, we get that :tv < m0,  + (1 - m)Or < 2o and At, I U _-< 

mow + (1 - m ) O r  by the same argument as above. In particular, we have 

:tF ] U < mO,, =< 2o. In the case e = r = z, 'IF and :to are expressed as  :tF = 

k0b + (1 -- k):t°F, 2o = m3~ + (1 -- m)A °.  So we get : t r  I U ~ :tO, because 
2o I U -<_ 2 o and m -<_ k (the equality holds if and only if b = w }. It is easy to 

check that :tt, < ,~o when b = w. If, on the other hand, b ~ w, the barycenter  o f  
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(mSw + (k - m)2 ° ) is equal to b. Hence we have kSb < (mSw + (k - m)2°), 
(1 - k ) 2  ° < (1 - k ) 2  ° ,  and so )-e < 2c. These yield that {2 c • G E ~ q }  is the 
desired consistent family. Thus by induction we conclude the assertion. 

THEOREM 4.2. Every probability measure lt ~ M + (X) is the terminal mea- 
sure of some consistent family { 2 G : G ~ } ,  associated with the order <, 
whose base point q is equal to the barycenter of#. 

In such a situation, all the results in [8] are still valid except for the Riesz 
type estimate about conjugate functions: let I~EM+(X) be a probability 
measure with barycenter q and let {/ta: G E~q} be a consistent family such 
that/~x = P. For notational convenience, we put ~[ f <  t] = #G if t > f(q) and 
/t{ f <  t] = 5q otherwise, where f ~ J ,  G = {y ~X:  f(y) < t} and t ~ R .  Also 

we call p [ f = t ] = ~ t [ f < t ] [ { y E X : f ( y ) = t }  for t>f (q) ,  i~[f=t]=Sq if 
t<f(q) ,  and # [ f < t ] = # [ f  < t ] -12[ f=t] .  By Definition 1 . 1 , / z [ f < t ]  is 
absolutely continuous with respect t o / t  =Px  and its density satisfies 0 < 
dl~[ f < t]/dp < dlz[ f <s]/dp < 1, t < s, a.e./~. Note that this density can be 
regarded as a measurable function on the product measure dp. dt via the trivial 
modification, where dt is the Lebesgue measure on R. The maximal function 
M s ( f  P) of  Brownian motion type is defined for each nonnegative function 
f ~J :  with p in the interval (0, ~ )  

MB( f O(Y ) = f o ~ PtP- ~ { 1 -- dl~[ f <  t ]/d#(y ) }dt. 

If f r  belongs to J for some r > 0  and if p > r ,  we have f Ms( fOdp <= 
(p/p - r) p/r f fPdp. This inequality was established by D. L. Burkholder, R. F. 
Gundy and M. L. Silverstein [2] in the case of Brownian maximal functions 
associated with classical Hardy spaces. The proof  is immediate from a version 
of Doob's maximal inequality (cf. [4]). In the present situation Doob's 
inequality takes the following form (cf. [8]): since f r E J  a n d / t [ f =  t c] < 
Px - P[ f <  to], c = r/p, we have 

J '=  tc](X) < f frd(l~[ f =  t~]) < f f r d ( u x  - f < tc]). 

Furthermore, the Fefferman-Stein type estimate [5] holds: if f ,  h E J  N ( - J) 
and (hf)(q) --- 0, we get from the similar argument as in Theorem 5.7 [8] that 

I f  fhdp[ <=v'~ rl(h) f Mn(lfl)d~<-_2v~ tl(h){1+ f I f l log + If ld#},  
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where r/(h) denotes Garsia "norm": 

,l(h) = [sup{ - h 2 ( y )  - ( - h ~ ) C v )  • y ~ X ) ] " 2  

and the last inequality is due to Zygmund's L log L estimate (cf. Appendix 

below). 

5. Appendix 

Let X be any compact Hausdorff space and let J be a convex cone in Cn(X) 
with (a), (b), (c) mentioned in Section 2. We use the symbol < to denote the 

partial order over M+(X) induced by J.  For any q of  X take an arbitrary 

consistent family (/t~ : G E ~ }  associated with < ,  and we prove Zygmund's 

L log L estimate for maximal functions (cf. [10]). 

THEOREM 5.1. Let (#o : G E,~q} be an arbitrary consistent family, and let 
k denote any nonnegativefunction in J. Then we have 

f MB(k)d~x<2{l + f klog+ kd~x}, 

where log + t = log(1 v t). 

PROOF. Let v be the distribution o fk  : v(t) = ltx((y ~ X: k(y) < t }). Apply- 
ing the well-known formula, we have f~ t log + t dv(t) = f k log + k dltx. On the 

other hand, it follows from Fubini's theorem that 

f Mn(k)dltx 

50 5J = (1 -/~[k < t](X)}dt = ~[k = t](X)dt = 2 g[k = 2t](X)dt. 

Since s~[k = s](X) -<_ f kd(~[k = sl), s > O, we get for any t > 0 

~[k=2t](X)<__(l/2t)(f kd(~[k<=2t])-f kd(#[k<2t])) 

~(1/2t)(f kdux- f kd(l~[k <2t])) 

f kd(#x - # [ k  < 2t]). < (1/20 

Note that/~[k _--< 2t] -</tx and/~x - /~ [k  < 2t] > 0. Putting E = {yEX: k(y) > t} 
we are led to the estimate: 
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t "  ( ,  

/ z [ k =  2t] <(1/2t) | kd(/~x-lt[k <2t])+( l /2 t )  | kd(l~x-l t[k < 2 t ] )  
dE  ,J X \g 

_ kdUx  + ( l / 2 t )  . t d ( U x  - u [ k  < 2 t  ]) < ( l /2 t )  

I~  kdlzx + (l/2)(/~x - / ~ [ k  < 2t])(X) < (1/2t) 

= (1/2/) .ff~ kdl~x + (1/2)/~[k = 2t](X). 

Therefore,  applying the distribution v o f  k, we obtain 

L 2" /~[k --- 2tl(X) N ( l / t )  kdl~x = ( l / t )  sdv(s). 

Accordingly it turns out that 

I~[k = 2tl(X)dt ~ 1 + l~[k = 2tl(X)dt 
1 

) f" )d < 1 + sdv(s (lit t 
1 

"oo  

= 1 + s log + sdv(s) 
t 

= 1 + k log + kdltx. 

Hence we conclude that 

f M n ( k ) d l a x < 2 f l + f k l o g +  kdlax}. 
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